湖湘杯2019两个密码题wp
还是自己太菜的原因,这次湖湘杯只做出来4道题,然后5点的时候就放弃了去跟同学出去玩了,当时感觉进前50无望(这次湖湘杯py情况也很严重啊,可惜烽火台只报不封,挺恶心的)。不过无论如何,这次比赛还是有收获的,总结沉淀一下这两道密码学题目吧:
Oracle padding attack
忘了这个题目是啥了,但是攻击原理就是针对CBC模式的特殊攻击方式,Oracle padding attack。详细原理可以从下面获取(介绍的很详细,强烈推荐):
https://www.freebuf.com/articles/database/151167.html
下面简单介绍一下利用原理:
Oracle padding attack的攻击条件还是比较苛刻的:
- 在给服务器返回的数据中,iv可控。(iv是对称加密中的偏移向量,不清楚的同学可以详细了解一下CBC等加密模式的原理。)
- 在响应数据中,攻击者可以通过报错等方式得知padding是否出错。
- 服务器采用对称加密算法,使用CBC模式和PCK#5填充法。(这个填充法就是在最后一组长度不足分组长度的时候,填充剩余多少字节个数,例如16字节分组中最终还剩6个,那就填充6个ascii的6)
- 初始的iv已知。
在服务器解密后,被解密的明文会和iv进行异或(这个是对称加密算法中CBC加密模式的基本原理,这里不懂建议回去复习一下,方便理解),之后会进行去填充处理,一般算法库对这种去填充的实现是:
- 检查最后一个字节的ascii值,这里为了方便解释我们假设是6。
- 检查后6个字节是不是6。
- 如果是6,那么去掉这6个6,否则就报错或提示信息。
这里注意:上述过程中检查的是被我们解密后,再和初始向量异或后的明文串。如果向服务器返回的iv可控,那么我们就可以通过不断改变iv的方法来通过报错达到被解密的数据串可控的目的,同时也可以任意恢复原文!我们假设分组长度为16,简述这个过程如下:
- 控制初始向量,前15个字符串任意,我们控制第16个字符串,从1爆破到255,不报错的那个结果肯定是使密钥解密出的明文串异或后为1。这是我们如果异或真正的初始向量,再异或1就恢复出了明文。这个明文再异或初始向量和我们期望解密的结果,那么这个串解密的结果就可控了。举个例子:假设我们爆破出的最后一个字符是0x20,原本初始向量的值是0x41,那么原本的明文串的最后一个字符就是:0x20 ^ 0x41 ^ 0x01=0x60。假设我们希望服务器解密这个串时最后一个字符是0x02,那么我们就可以调整初始向量为:0x60 ^ 0x41 ^ 0x02=0x23。
- 根据第一步,我们已经爆破出了分组中的最后一个明文,先控制最后一个初始向量,使其经解密后结果为0x02,然后我们再控制倒数第二个初始向量,从1爆破到255,那么不报错的那个结果肯定是使密码解密处的明文串异或后为2。这时我们以此类推,爆破倒数第三个。
原理就是这些,这道题使用脚本攻击如下:
#enconding:utf-8 ''' @Author: b0ring @MySite: https://unnamebao.github.io/ @Date: 2019-11-10 12:02:53 @Version: 1.0.0 ''' import socket import base64 import codecs def num2str(i): return ("%02x"%i).encode() def postfix_str(postfix,iv,index): res_ = b"" for i in range(int(len(postfix)/2)): res_ = num2str(int(postfix[len(postfix) - (i+1)*2:len(postfix)-i*2],16)^int(iv[32-(i+1)*2:32-i*2],16)^index) + res_ return res_ def brute_one(IV,encryp_text,client,index,postfix): for i in range(256): if index == 0: if i == IV[-1]: continue if i == 0: print("[*] append:",postfix_str(postfix,IV,index)) iv = b"41"*(16-index) + num2str(i) + postfix_str(postfix,IV,index) data_to_send = iv + encryp_text + b'\n' client.send(data_to_send) data_respond = client.recv(1024) # print(i,int(iv[32-index*2:32-index*2+2],16)^int(IV[32-index*2:32-index*2+2],16),data_respond) if b"padding error" in data_respond: continue else: return num2str(i^int(IV[32-index*2:32-index*2+2],16)^index) if __name__ == "__main__": client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(('183.129.189.62', 13706)) data = client.recv(1024) print(data) c = data.decode().split("\n")[0].replace("Hey, new! Your passport is ","")[:64] IV= c[:32].encode() encryp_text = c[32:].encode() print("[*] IV:",IV) print(type(IV)) postfix = b"" for index in range(0,16): one = brute_one(IV,encryp_text,client,index+1,postfix) postfix = one + postfix print("[*] postfix:",postfix) print('-----------------------------') payload = b"" admin = b"Admin" for i in range(5): payload += num2str(admin[i] ^ int(postfix[i*2:i*2+2],16) ^ int(IV[i*2:i*2+2],16)) for i in range(5,16): payload += num2str(11 ^ int(postfix[i*2:i*2+2],16) ^ int(IV[i*2:i*2+2],16)) print(type(payload)) print(payload) print(len(payload)) payload += encryp_text + b'\n' client.send(payload) print(client.recv(1024))
Easy RSA
首先看一下题目吧:
from Crypto.Util.number import * import libnum import gmpy2 flag = open("flag.txt","rb").read() m=libnum.s2n(flag) p=getPrime(1024) q=getPrime(1024) n=p*q e=65537 c=pow(m,e,n) phi=(p-1)*(q-1) d=gmpy2.invert(e,phi) dp=d%(p-1) print dp,n,e,c #84373069210173690047629226878686144017052129353931011112880892379361035492516066159394115482289291025932915787077633999791002846189004408043685986856359812230222233165493645074459765748901898518115384084258143483508823079115319711227124403284267559950883054402576935436305927705016459382628196407373896831725 22000596569856085362623019573995240143720890380678581299411213688857584612953014122879995808816872221032805734151343458921719334360194024890377075521680399678533655114261000716106870610083356478621445541840124447459943322577740268407217950081217130055057926816065068275999620502766866379465521042298370686053823448099778572878765782711260673185703889168702746195779250373642505375725925213796848495518878490786035363094086520257020021547827073768598600151928787434153003675096254792245014217044607440890694190989162318846104385311646123343795149489946251221774030484424581846841141819601874562109228016707364220840611 65537 14874271064669918581178066047207495551570421575260298116038863877424499500626920855863261194264169850678206604144314318171829367575688726593323863145664241189167820996601561389159819873734368810449011761054668595565217970516125181240869998009561140277444653698278073509852288720276008438965069627886972839146199102497874818473454932012374251932864118784065064885987416408142362577322906063320726241313252172382519793691513360909796645028353257317044086708114163313328952830378067342164675055195428728335222242094290731292113709866489975077052604333805889421889967835433026770417624703011718120347415460385182429795735
我们从中提取一些信息(由于freebuf上使用markdown生成数学公式有问题,建议出现阅读问题的朋友来我的博客阅读本文章:https://blog.b0ring.cf/#/posts/%E6%B9%96%E6%B9%98%E6%9D%AF2019%E4%B8%A4%E4%B8%AA%E5%AF%86%E7%A0%81%E9%A2%98wp):
m = flag # m中的值是flag的明文串n = p q # 这个很清晰 学过RSA应该理解e = 65537 # 提醒下,65537是个质数,虽然好像是不是质数无所谓c = pow(m,e,n) # 这里就是典型的RSA加密了,如果已知d,可以通过 m = pow(c,d,n)解出明文,其中,(e,n)是公钥,d是私钥。phi = (p-1)(q-1) # 这里计算了n的欧拉函数,解释一下,欧拉函数是小于一个数有多少与其互质的数,质数的欧拉函数就是自身减一,而两个质数相乘的数,它的欧拉函数就是两个质数相加减一相乘d = gmpy2.invert(e,phi) # 这里就是求同余phi下与e互质的数,就是私钥ddp = d % (p-1) # 就是d对(p-1)求余
梳理一下:
e,c,n已知,dp = d % (p-1)已知,求m
这个地方涉及到一个原理:
对于任意因子a、b(不需要是质数),$x=a*b$,如果$c \equiv m \mod x$,那么 $c \equiv m \mod a$和$c \equiv m \mod b$ 都成立。举个例子来理解: $16 \equiv 1 \mod 15$那么 $16 \equiv 1 \mod 3$,$16 \equiv 1 \mod 5$
而我们知道,d和e在同余phi下是互逆的,所以:
$de \equiv 1 \mod phi$$de \equiv 1 \mod (p-1)(q-1)$$de \equiv 1 \mod (p-1)$$dp*e \equiv 1 \mod (p-1)$
因此,$(dpe – 1)$一定是(p-1)的倍数,且p是素数。而且,我们又知道,$dp < (p-1)$,因此遍历1~65537,一定可以找到一个数,使$(dpe – 1) \equiv 0 \mod (p-1)$
使用脚本如下:
#enconding:utf-8 ''' @Author: b0ring @MySite: https://unnamebao.github.io/ @Date: 2019-11-10 12:36:18 @Version: 1.0.0 ''' import Crypto.Util.number as number def fastpow(Co, CoCo, CoCoCo): CoCoCoCo = 1 while CoCo != 0: if (CoCo & 1) == 1: CoCoCoCo = (CoCoCoCo * Co) % CoCoCo CoCo >>= 1 Co = (Co * Co) % CoCoCo return CoCoCoCo def gcd(num_1,num_2): p,q=max(num_1,num_2),min(num_1,num_2) if q == 0: return p r = p%q return gcd(q,r) def EX_GCD(a,b,arr): #扩展欧几里得 if b == 0: arr[0] = 1 arr[1] = 0 return a g = EX_GCD(b, a % b, arr) t = arr[0] arr[0] = arr[1] arr[1] = t - int(a // b) * arr[1] return g def ModReverse(a,n): arr = [0,1,] gcd = EX_GCD(a,n,arr) if gcd == 1: return (arr[0] % n + n) % n else: return -1 dp = 84373069210173690047629226878686144017052129353931011112880892379361035492516066159394115482289291025932915787077633999791002846189004408043685986856359812230222233165493645074459765748901898518115384084258143483508823079115319711227124403284267559950883054402576935436305927705016459382628196407373896831725 n = 22000596569856085362623019573995240143720890380678581299411213688857584612953014122879995808816872221032805734151343458921719334360194024890377075521680399678533655114261000716106870610083356478621445541840124447459943322577740268407217950081217130055057926816065068275999620502766866379465521042298370686053823448099778572878765782711260673185703889168702746195779250373642505375725925213796848495518878490786035363094086520257020021547827073768598600151928787434153003675096254792245014217044607440890694190989162318846104385311646123343795149489946251221774030484424581846841141819601874562109228016707364220840611 e = 65537 c = 14874271064669918581178066047207495551570421575260298116038863877424499500626920855863261194264169850678206604144314318171829367575688726593323863145664241189167820996601561389159819873734368810449011761054668595565217970516125181240869998009561140277444653698278073509852288720276008438965069627886972839146199102497874818473454932012374251932864118784065064885987416408142362577322906063320726241313252172382519793691513360909796645028353257317044086708114163313328952830378067342164675055195428728335222242094290731292113709866489975077052604333805889421889967835433026770417624703011718120347415460385182429795735 # tmp1 = (dp * e) -1 for i in range(65537)[::-1]: if (dp*e-1)%i == 0 and number.isPrime((dp*e-1)//i + 1): p = (dp*e-1)//i + 1 break q = n // p phi = (p-1)*(q-1) d = ModReverse(e,phi) m = fastpow(c,d,n) print(number.long_to_bytes(m))
当然了,这里可以这样用是因为e比较小,那么如果e很大怎么办呢?其实我们已知e和dp在同余(p-1)下是互逆的,那么:
对于任意一个数r,$r^{edp} \equiv r \mod p$为什么呢?因为根据欧拉定理,我们有:$r^{ \phi(p) } \equiv 1 \mod p$又因为p是素数,$\phi(p) = p-1$$e dp \equiv 1 \mod (p-1)$$r^{edp} = r^{n\phi(p)+1} \equiv 1r \mod p$因此 $r^{dpe} – r = n*p$
也就是说,对于任意的r,我们可以利用$r^{n*dp} -r$来找到p的一个倍数,再使用扩展欧几里得算法去求其与n的最大公因数,就可以算出p了,脚本具体步骤如下:
#enconding:utf-8 ''' @Author: b0ring @MySite: https://unnamebao.github.io/ @Date: 2019-11-10 12:36:18 @Version: 1.0.0 ''' import Crypto.Util.number as number def fastpow(Co, CoCo, CoCoCo): CoCoCoCo = 1 while CoCo != 0: if (CoCo & 1) == 1: CoCoCoCo = (CoCoCoCo * Co) % CoCoCo CoCo >>= 1 Co = (Co * Co) % CoCoCo return CoCoCoCo def gcd(num_1,num_2): p,q=max(num_1,num_2),min(num_1,num_2) if q == 0: return p r = p%q return gcd(q,r) def EX_GCD(a,b,arr): #扩展欧几里得 if b == 0: arr[0] = 1 arr[1] = 0 return a g = EX_GCD(b, a % b, arr) t = arr[0] arr[0] = arr[1] arr[1] = t - int(a // b) * arr[1] return g def ModReverse(a,n): arr = [0,1,] gcd = EX_GCD(a,n,arr) if gcd == 1: return (arr[0] % n + n) % n else: return -1 dp = 84373069210173690047629226878686144017052129353931011112880892379361035492516066159394115482289291025932915787077633999791002846189004408043685986856359812230222233165493645074459765748901898518115384084258143483508823079115319711227124403284267559950883054402576935436305927705016459382628196407373896831725 n = 22000596569856085362623019573995240143720890380678581299411213688857584612953014122879995808816872221032805734151343458921719334360194024890377075521680399678533655114261000716106870610083356478621445541840124447459943322577740268407217950081217130055057926816065068275999620502766866379465521042298370686053823448099778572878765782711260673185703889168702746195779250373642505375725925213796848495518878490786035363094086520257020021547827073768598600151928787434153003675096254792245014217044607440890694190989162318846104385311646123343795149489946251221774030484424581846841141819601874562109228016707364220840611 e = 65537 c = 14874271064669918581178066047207495551570421575260298116038863877424499500626920855863261194264169850678206604144314318171829367575688726593323863145664241189167820996601561389159819873734368810449011761054668595565217970516125181240869998009561140277444653698278073509852288720276008438965069627886972839146199102497874818473454932012374251932864118784065064885987416408142362577322906063320726241313252172382519793691513360909796645028353257317044086708114163313328952830378067342164675055195428728335222242094290731292113709866489975077052604333805889421889967835433026770417624703011718120347415460385182429795735 mp = fastpow(e,e*dp,n)-e p = gcd(mp,n) q = n // p phi = (p-1)*(q-1) d = ModReverse(e,phi) m = fastpow(c,d,n) print(number.long_to_bytes(m))
来源:freebuf.com 2019-11-10 12:50:15 by: b0ring
请登录后发表评论
注册